Development of a highly sensitive spectral camera for cartilage monitoring using fluorescence spectroscopy
نویسنده
چکیده
The Ulm University Medical Center and the Ulm University of Applied Sciences are developing a bioreactor to grow facial cartilage using the methods of tissue engineering. To ensure a sufficient quality of the cartilage prior to implantation, the cartilage growth has to be monitored continuously. Current cartilage analysis methods are destructive so that analysed cartilage sample is no longer suitable for implantation. Alternatively, it seems feasible to analyse cartilage during the cultivation process and before implantation using fluorescence spectroscopy after UV light excitation. This approach is non-invasive and allows an evaluation of the cartilage in terms of composition and quality. Cultured cartilage implants can reach sizes of several square centimetres and therefore it is necessary to examine it over its entire area. For recording fluorescence spectra of different spots of the cartilage sample, a highly sensitive spectral camera is being developed in two steps. The first step is a one-dimensional spectral camera that is able to record fluorescence spectra along a sample line. The second step enables the detection of spectra over the required two-dimensional sample area. This approach is based on computed tomography imaging spectrometry (CTIS) and allows non-invasive distinguishing of the most important cartilage compounds collagen I and collagen II.
منابع مشابه
Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging
Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...
متن کاملDevelopment of a Simple and Sensitive Terbium Sensitized Fluorescence Method for Determination of Epinephrine and Norepinephrine in Serum
A simple, rapid, selective and highly sensitive fluorimetric method for determination of two catecholamines, i.e. norepinephrine (NE) and epinephrine (EP), in serum samples was developed. The method is based on the fluorescence sensitization of terbium (Tb3+) by complexation with both catecholamines in the presence of lanthanum (La3+), as a co-cation, and in a Na...
متن کاملOPTICAL STUDIES OF COLORED CHEMICAL SPECIES
Evanescent wave spectroscopy using thin optically transparent electrodes and multiple reflections allows unique observations of the electrochemical interphase since the region of solution sampled is typically 100 nm from the electrode in the visible spectral region. This technique is found to be highly sensitive to the presence of absorbing adsorbed species
متن کاملHighly Sensitive FRET-Based Fluorescence Immunoassay for Detecting of Aflatoxin B1 Using Magnetic/Silica Core-Shell as a Signal Intensifier
Background: Recently, some new nanobiosensors using different nanoparticles or microarray systems for detection of mycotoxins have been designed . However, rapid, sensitive and early detection of aflatoxicosis would be very helpful to distinguish high-risk persons. Objectives: We report a highly sensitive competitive immunoassay using magnetic/silica core shell as a signal intensifier for the d...
متن کاملBiosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles
Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...
متن کامل